DB vs RDF: structure vs correlation

+ comments on data integration & SW

Peter Boncz
Senior Research Scientist @ CWI
Lecturer @ Vrije Universiteit Amsterdam
Architect & Co-founder MonetDB
Architect & Co-founder VectorWise
Correlations

Real data is highly correlated

- (gender, location) \leftrightarrow firstname
- (profession, age) \leftrightarrow income

But...

database systems assume attribute independence

- wrong assumption leads to suboptimal query plan
Example: co-authorship query

DBLP
“find authors who published in VLDB, SIGMOD and Bioinformatics”

SELECT author
FROM publications p1, p2, p3
WHERE p1.venue = VLDB and p2.venue = SIGMOD and p3.venue = Bioinformatics and p1.author = p2.author and p1.author = p3.author and p2.author = p3.author
Correlations: RDBMS vs RDF

Schematic structure in RDF data hidden in **correlations**, which are everywhere

SPARQL leads to plans with
- many self-joins
- whose hit-ratio is correlated (with eg selections)

Relational query optimizers do not have a clue
- all **self-joins look the same** to it
- **random** join order, bad query plans 😞
RDF Engines to the Next Level

Challenge: solving the correlation problem.

Ideas?
- Interleave optimization and execution
 - Run-time *sampling* to detect true selectivities
 - Run-time query (re-)planning

- Tackling when there are long join chains
 - Creating partial path indexes
 - Graph “cracking”: index build as side-effect of query
Stratos Idreos: database cracking

Challenge: solving the correlation problem.

Ideas?
- Interleave optimization and execution
 - Run-time **sampling** to detect true selectivities
 - Run-time (re-)planning
- Tackling when there are long join chains
 - Create partial path indexes
 - Graph “**cracking**”: index build as side-effect of query
RDF Engines to the Next Level

Challenge: solving the correlation problem.

Ideas?
- Interleave optimization and execution
 - Run-time **sampling** to detect true selectivities
 - Run-time query (re-)planning

- Tackling when there are long join chains
 - Creating partial path indexes
 - Graph “**cracking**”: index build as side-effect of query
 - “**recycling**” intermediate results
RDF Engines to the Next Level

Benchmarking in LOD2:
- Attempting to engage vendors to collaborate
 "a TPC for RDF"

- New and more challenging benchmarks
 “Suitably designed benchmarks drive progress”

benchmarks with:
- complex query patterns on large data
- geo and text data and queries
- outside Linked Open Datasets that get joined to synthetic data
- highly interlinked graph structures and queries on them
- correlated query predicates
Social Intelligence Benchmark (SIB)

RDF-friendly benchmark simulating a huge social network

- Social Graphs have understandable, interesting, scenarios
- Social Graphs are highly connected
 - LOD in the wild not yet

- Exploiting knowledge bases from interlinked RDF datasets
 - not only synthetic data, also linking out to DBpedia

conversation topics, real world concepts, geographical information, connectivity, social network analysis

Data correlations galore
thoughts on.. **Information Integration**

Data integration and **Schema** Integration
- Different applications, organizations, time motives
 hard problem, tens of B$/y

- Has been on the DB R&D menu for 20+ years
 - AI complete, immature tech
 - hard to achieve high precision **automatically**

- Semantic Web does not solve this issue
 - In fact, it is its major hurdle to success
 - **Information integration != \{Reasoning,Inference,Logic\}**
The **schema.org** Approach

choose
- web-addressable, machine-readable schema+data

over
- ragged, graph, schema-last RDF data model

Approach:
- schema-first, centralized, controlled
- well-defined use case (web search = ad money)
The **Watson** Approach

Winning Jeopardy! is pretty cool

No central role for reasoning, inference there

Recipe:

- Finding statistical evidence in Big Data
- Using semantics for focused sub-tasks (only)
- Intelligently combining multiple approaches
- **Focusing on the** Jeopardy! **problem at hand**